Endosperm Brewing: Using the Heart of the Malt for Clean Flavor
Endosperm brewing

• What it is
• Where it came from
• How it’s done
• Why it works
• Fun uses for it
• How you can do it too
Endosperm mashing has been around for centuries and is still practiced today.

Furthermore, we use the expensive Riegele technology for eliminating chaff from wholesome, nutritious grain, and our own Riegele 3-way mash brewing process. Our beers do not evolve in a fast-fermentation process. Instead, they ripen over the course of months in our underground beer cellars. And we are all passionate in our dedication; we brew knowledgeably.

BREWING TRUMER PILS

Brewing is the ultimate melding of art and science. With Trumer Pils we apply precision milling techniques to our barley malt, remove the husks to eliminate astringent bitterness and maximize smoothness, and gently swirl in noble hops for flavor and aroma. Cold fermentation and extended Krausening contribute breadth of character and effervescence. The result? A crisp, balanced, refreshing work of art.
Endosperm Mashing and Husk recovery

An option in modern dry mills

• Requires additional equipment
Husk Removal

- Separate Husk
- Mechanical Sifting
- Aspiration
- Combination

Why sift?

Dustin Miley

So... This is geared more towards a homebrewer? It kind of seems impractical, if not impossible on a commercial scale.

Like · Reply · 1y
Milling for Endosperm Brewing

- Milling objectives
 - Separate husk from endosperm
 - Limit fines and flour
Additional Particle Classification

• Malt Fractions
 • Milling creates a wide range of particle sizes
 • Arbitrary Categories
 Husk
Additional Particle Classification

• Malt Fractions
 • Milling creates a wide range of particle sizes
• Arbitrary Categories

 Flour
 Fine Grits
Additional Particle Classification

• Malt Fractions
 • Milling creates a wide range of particle sizes
 • Arbitrary Categories

Coarse Grits
<table>
<thead>
<tr>
<th>Malt Fraction</th>
<th>Approx %</th>
<th>Extract (as-is)</th>
<th>Filtration Speed</th>
<th>Sensory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Grind</td>
<td>100</td>
<td>78%</td>
<td>Typical</td>
<td>typical, malty, grainy, 😊</td>
</tr>
<tr>
<td>Coarse Grit</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Grit</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flour</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Husk

- Contains Polyphenols
 - Astringency
 - Drying finish
 - Bind Water
 - Hay-like flavor
Endosperm Mashing

• Brewing to limit husk exposure
 • Remove husk and mash as usual
 • Avoid mash off temperatures
 • Re-introduce a portion of husk to assist in lautering (25-100%)

[Optional] Pre-wash husk to extract polyphenols
Endosperm Mashing

- Brewing to limit husk exposure
 - Remove husk and mash as usual
 - Avoid mash off temperatures
 - Re-introduce a portion of husk to assist in lautering (25-100%)
 - [Optional] Pre-wash husk to extract polyphenols

Rinsed once with 1 gal / # husk
Final of 4 rinses with 1 gal / # husk
Fine Grit Makeup

- Endosperm
- Husk
- Acrospires
Fine Grit Makeup

- Endosperm
- Husk
- Acrospires
 - Contain bitter proteins
 - Sprout, vegetal flavor
The Chemical Composition, the Nutritive Value and the Functional Properties of Malt Sprout and its Components (Acrospires, Rootlets and Husks)

Abdel-Razek A Salama, Malak A El-Sahn, Ahmed S Mesallam and Ahmed M El-Tabey Shehata*

Department of Food Science and Technology, Faculty of Agriculture, University of Alexandria, Alexandria, El-Chatby 21526, Egypt
(Received 27 August 1996; revised version received 13 December 1996; accepted 3 March 1997)

Abstract: The components of malt sprouts were effectively separated by manual winnowing into acrospires (15.3%), rootlets (40.1%) and husks (43.7%). The bitter taste was located in the acrospires. Percent recovery of protein and fibre was, respectively, 95.2 and 87.2 of malt sprouts. The acrospires were rich in protein (30.3%) and sugars (45.7%) but low in calcium (1.94 g kg⁻¹), fibre content (4.6%) and essential amino acids. They had moderate functional proper-
Malt Flour

- The most friable portion of malt
 - Most modified portion of malt
 - Low Beta Glucan
 - High S/T
- High extract yield
- Clean flavor
Standard Malt & Coarse Grit
Why it works

• No dough from flour
• Good particle integrity
 • Springy
• Coarse semi-ridged particles make for large spaces within grist matrix

➢ Process with high inclusion of adjuncts (Even Oat Flakes!)
➢ Rapid lauter with low Differential Pressures
• High Adjunct Beer
 • Successfully brewed 50% oat flake IPA, named the Jellyfish due to the viscous-slimy nature of wort
 Non-Starch Polysaccharides able to move through grain
 Processing was difficult through 1st worts but eased as wort thinned

• Commercial Brewing Trials
• High Gravity Beer
Commercial Trials

- 3bbl (BrauKon)
- 7bbl
- 10bbl
- 15bbl (Sprinkman)

- NO issues in processing
 - Grain conveyance
 - Lauter
 - Trub pile
 - Fermentation
Commercial 10bbl Brew, 90% malt grits

- 475# Brew (90% malt grits, 10% specialty malts)
- The collection took place over 65 minutes.
- Wort at kettle full was 10.3 brix (12bbl)
 - 1# malt yielded 0.7# extract
- Processed like a typical brew
- Achieved target yield
- Unique clean flavor
High Gravity Brewing

- Husk material has a high capacity to bind water, by leaving it out the brewer will have more available water for the same amount of malt
 - Husk retains 4-5x the moisture of starchy endosperm
 - 5% husk will increase water uptake 20%
 - Standard Grind 15% more volume in lauter tun from Coarse Grit

<table>
<thead>
<tr>
<th>Item</th>
<th>Liq/grst</th>
<th>1st Wort P</th>
<th>BH Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Grind</td>
<td>2.5</td>
<td>23.0</td>
<td>100%</td>
</tr>
<tr>
<td>Coarse Grit</td>
<td>2.5</td>
<td>23.4</td>
<td>102%</td>
</tr>
<tr>
<td>Coarse Grit</td>
<td>2.05</td>
<td>26.6</td>
<td>116%</td>
</tr>
</tbody>
</table>

- Coarse Grit at 2.05l/g appeared thinner and pulled less DP than Standard Grind at 2.5l/g
Ultra High Gravity Processing

Rate and DP (1.8 liq/grist ratio)

- Running, P
- Collection, P

Kettle Full 19.7 Plato
Weak Wort Start 7.8 Plato

Plato

0:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00 2:15

Hours:Minutes
Ultra High Gravity Processing

Rate and DP (1.8 liq/grist ratio)
Ultra High Gravity Processing

Rate and DP (1.8 liq/grist ratio)

- Collection, P
- dp
- L/min

Plato, "DP"

Hours:Minutes
Conclusions

- Endosperm brewing is a recognized technique for producing very clean tasting wort and interesting brewing processes.
- Removal of the husk removes unwanted flavor and mass from the process.
- Endosperm can be recovered from normal dry milling by modifying the process.
Synergy Select Pilsen MaltGems™

• European-style Pilsen Malt, Premium Pre-ground Format

Applications

• Single varietal base malt for all beer styles
• Perfect for exceptionally clean Pilsners, Light ales and Sessions
• High gravity brewing

Sensory Characteristics

Color: Light Golden Color

Flavor: Clean, sweet, mild malty, very low astringency and bitterness
Discussion